Serial Communication

Prof. James L. Frankel Harvard University

Version of 4:36 PM 4-Oct-2022 Copyright © 2022, 2021, 2015 James L. Frankel. All rights reserved.

Overview of the Serial Protocol

- Simple protocol for communicating data usually character by character
 - Existed before more complex protocols such as Ethernet, USB, etc.
- Data is transmitted and received in a bit serial manner
- Transmission and reception can both proceed at the same time
 - For serial communication, this is referred to as "full duplex" operation
 - Communication that can occur in only one direction is referred to as "simplex" operation
 - If no concurrent transmission and reception is allowed but both directions can occur, this is referred to as "half duplex" operation
- The simplest bi-directional version has three wires in the cable
 - GND A common ground wire (for ground reference)
 - **TxD** A transmit wire
 - **RxD** A receive wire
- There are many other control wires
- Standardized versions are referred to as
 - RS-232
 - EIA RS-232 or EIA-232
 - TIA-232

Voltage Levels

- Two states for data (& control signals)
 - Space
 - Indicates a **0** for *data*
 - +3 to +15 VDC
 - Originally +12 VDC
 - Indicates asserted or on or true for control lines
 - Mark
 - Indicates a **1** for *data*
 - -15 to -3 VDC
 - Originally -12 VDC
 - Indicates deasserted or off or false for control lines
- These voltages cause problems
 - Additional power supplies or voltage converters are required
 - Higher voltage limits transmission speed
 - Reference to a transmitted common ground limits cable length and can cause ground loop issues

Two Sides of the Connection

- DTE Data Terminal Equipment
 - Examples are terminals & peripheral devices
- DCE Data Communication Equipment
 - Examples are modems & computers
- TxD sends data from DTE to DCE
- RxD sends data from DCE to DTE

Connectors

- D-Subminiature Connector with 25 pins
 - DB-25
- D-Subminiature Connector with 9 pins
 - **DE-9** (Often referred to as DB-9)
- A metal shield provides protection from interference
- Connector with pins is referred to as male (DB-25M, DE-9M)
 - DTE defines the pins
- Connector with sockets is referred to as female (DB-25F, DE-9F)
 - DCE defines the pins
- The standard defines which pins are used for which signals

DE-9M Connector

DE-9F Connector

Speed of Connection

- Bit rate (frequency) is named the **baud rate**
- For example, 9,600 baud is 9,600 bits per second
- The baud rate determines the timing per bit (cycle time) the bit time
 - bit time = 1/(baud rate)
 - At 9,600 baud, the bit time is ~0.10417 ms

Synchronous vs. Asynchronous

- Synchronous communication transmits a clock with data
- Asynchronous communication embeds an implicit clock in the data
- EIA-232 is asynchronous
- The two subsequent examples show eight data bits

Example of Synchronous Communication

Example of Asynchronous Communication

Details of Asynchronous Protocol

- To transmit back-to-back data, there is no need for any "idle" period
- Transmitter and receiver must agree on the protocol
 - First, they must agree on the baud rate
- The number of data bits is usually between 5 and 9, inclusive
- The optional **parity bit** is used to detect single-bit errors
 - Can be even or odd
 - Need not be present
- The stop bit(s) is used to "frame" the data
 - In most usage, there may be 1 stop bit, 1.5 stop bits, or 2 stop bits
- The low start bit and high stop bit(s) mean that there are at least two voltage transitions in each frame
- If the data line is held low for longer than one frame length, this is called a break condition

Receiver Action

- Receiver samples the data line at a rate higher than the baud rate this is called the sampling rate
 - Say, at sixteen times the baud rate
- When the receiver detects the **start bit**, it waits for half the bit time and resamples the data line
 - If the start bit is not still present, it was a spurious start bit
 - If the start bit is still present, it is a valid start bit
 - The higher the receiver sample rate, the more accurately the middle of the start bit can be determined
- Subsequent bits are sampled at the bit time from the middle of the start bit
 - This allows for some difference between the clock rate of the transmitter and that of the receiver
- More advanced receivers resynchronize their sampling point whenever they see a change in the data line
- After all the data bits and the optional parity bit, the receiver checks for the stop bit(s)

Receiver Buffering

- After a complete frame has been received, the serial data is made available to the computer as a parallel byte or word
- In order to allow the receiver to receive the next data frame, at a minimum, most receivers are able to store the data from one frame while receiving the next frame
- More advanced receivers use a FIFO to store the received parallel data
 - In this usage, the term **FIFO** is used to refer to a hardware FIFO (First-in, First-out) queue
- This buffering allows the receiver to function without losing data before the computer reads data from the receiver

Errors Found by the Receiver

- Spurious start bit
 - A transition to space was detected, but was not asserted for a full bit time
- Parity error
 - Received parity does not have expected value
- Framing error
 - The stop bit was not present where expected
- Overrun error
 - The buffering was insufficient (old data was overwritten by new data)

Component to Transmit/Receive Bit Pattern

- **UART** Universal Asynchronous Receiver/Transmitter
 - Asynchronous only
- **USART** Universal Synchronous/Asynchronous Receiver/Transmitter
 - Both Synchronous & Asynchronous
- These devices work at circuit logic voltage level (e.g. 3.3 V)
- An additional device is required to produce and receive the EIA-232 voltage levels
 - Often called a RS-232 Voltage Converter or RS-232 Driver/Receiver
 - For example, see the Maxim MAX232A